

isolated dienes: double bonds react independently of one another conjugated dienes: reactivity pattern requires us to think of conjugated diene system as a functional group of its own cumulated dienes: specialized topic

Addition of Hydrogen Halides to Conjugated Dienes

Rationale

3-Bromo-1-butene is formed faster than 1-bromo-2-butene because allylic carbocations react with nucleophiles preferentially at the carbon that bears the greater share of positive charge.

Rationale

3-Bromo-1-butene is formed faster than 1-bromo-2-butene because allylic carbocations react with nucleophiles preferentially at the carbon that bears the greater share of positive charge.

Rationale

1-Bromo-2-butene is more stable than 3-bromo-1-butene because it has a more highly substituted double bond.

more stable

Rationale

The two products equilibrate at 25°C.

Once equilibrium is established, the more stable isomer predominates.

Kinetic Control versus Thermodynamic Control

Kinetic control: major product is the one formed at the fastest rate

Thermodynamic control: major product is the one that is the most stable

